String searching and to a broader extent pattern matching are some of the most fundamental operations you can do on a computer. Much research has been done into pattern matching algorithms using techniques ranging from brute fo
In the past I've primarily used two sources as reference material while implementing AVL trees: the example in Mastering Algorithms with Perl from O'Reilly, and Robert Sedgewick's description of the implementation from his book Algorithms. Both of thes
Pattern132 is an interesting problem I've seen floating around on various message boards. It is a constraint satisfaction problem that I've seen all manner of solutions for ranging from dynamic programming, to straight brute force iteration. When I fir
Functional Programming with Java
Early in my career, I had a lead developer on a project who during code review, much to my chagrin, kept making me re-write what was in my opinion “perfectly good, working code”. To my lead however
-
The Aho, Sethi, Ullman Direct DFA Construction Part 2: Building the DFA from Followpos
-
The Aho, Sethi, Ullman Direct DFA Construction, Part 1: Constructing the Followpos Table
-
Procedural Map Generation with Binary Space Partitioning
-
Exact Match String Searching: The Knuth-Morris-Pratt Algorithm
-
The visitor pattern: OOP takes on the Expression Problem
-
Improving mgcLisp's define syntax
-
Separating the Men from the Boys, Knuth Style
-
Reducing rotations during deletion from AVL trees
-
Parsing Lisp: From Data To Code
-
Swiz Heaps: A deterministic modification of Randomized Meldable Heaps